A product-regulated fructose 2,6-bisphosphatase occurs in green leaves

Csaba Cséke, Mark Stitt+, Árpád Balogh and Bob B. Buchanan*

Division of Molecular Plant Biology, Hilgard Hall, University of California, Berkeley, CA 94720, USA

Received 9 August 1983

An enzyme catalyzing the hydrolytic conversion of fructose 2,6-bisphosphate (Fru-2,6-P₂) to fructose 6-phosphate (Fru-6-P) and P_i has been identified and purified from plants, specifically the cytosolic fraction of spinach leaf parenchyma cells. Partially purified preparations of the enzyme, designated fructose 2,6-bisphosphatase (Fru-2,6,-P₂ase), were inhibited by products of the reaction (i.e., P_i and Fru-6-P) but showed no response to a protein phosphorylation system known to inhibit the corresponding enzyme in mammalian cells. Fru-2,6-P₂ase co-purified with fructose 6-phosphate,2-kinase, the enzyme catalyzing the synthesis of Fru-2,6-P₂. The observed pattern of regulation of the enzymes functional in the synthesis and breakdown of Fru-2,6-P₂ reinforces the conclusion that chloroplasts play a role in controlling cytosolic carbon processing in leaves.

Fructose 2,6-bisphosphate

Fructose 2,6-bisphosphatase Sucr Glycolysis Enzyme regulation

Sucrose synthesis

Gluconeogenesis

1. INTRODUCTION

We recently reported evidence for the occurrence of an enzyme, designated fructose 6-phosphate, 2-kinase, that catalyzes the synthesis of fructose 2,6-bisphosphate from fructose 6-phosphate and ATP in the cytosolic fraction of spinach leaf parenchyma cells [1]:

Fru-6-P+ATP $\xrightarrow{\text{Fru-6-P,2K}}$ Fru-2,6-P₂+ADP (1)

Fru-6-P,2K was regulated allosterically by

- Permanent address: Lehrstuhl f
 ür Biochemie der Pflanze der Universit
 ät G
 öttingen, Untere Karsp
 üle 2, FRG
- * To whom correspondence should be addressed

Abbreviations: Fru-2,6-P₂, fructose 2,6-bisphosphate; Fru-2,6-P₂ase, fructose 2,6-bisphosphatase; Fru-6-P₂X, fructose 6 phosphate,2-kinase; PFP, pyrophosphate-linked phosphofructokinase (EC 2.7.190); PGA, 3-phosphoglycerate; Fru-1,6-P₂, fructose 1,6-bisphosphate; Glu-1,6-P₂, glucose 1,6-diphosphate

metabolite effectors that are formed and transported by chloroplasts (P_i, an activator and 3-phosphoglycerate or PGA, an inhibitor). This finding supported earlier evidence that Fru-2,6-P₂ functions in the leaf cytosol to regulate carbon flow (i.e., sucrose synthesis and breakdown) through activation of a glycolytic enzyme (pyrophosphate-linked phosphofructokinase or PFP) and through inhibition of an enzyme of gluconeogenesis (fructose 1,6-bisphosphatase) [2,3]. Recent evidence showing changes in the concentration of Fru-2,6-P₂ in leaves as a result of illumination status is in accord with this conclusion [4].

If Fru-2,6-P₂ plays a dynamic role in carbon interconversions, an enzyme catalyzing its selective hydrolysis should be present in plant tissues. While such an enzyme has been described for animal systems [5-7], there is to date no evidence for its presence in plants. We have therefore investigated this problem and now report evidence for the occurrence of a product-inhibited enzyme catalyzing the hydrolysis of Fru-2,6-P₂ (Fru-2,6-P₂ase) in the

cytosolic fraction of spinach leaf parenchyma cells:

Fru-2,6-P₂ + H₂O
$$\xrightarrow{\text{Fru-2,6-P}_2\text{ase}}$$
 Fru-6-P + P_i (2)

The regulatory properties of the enzyme support the role for effector metabolites in controlling the level of Fru-2,6-P₂ in leaves suggested in [1].

2. MATERIALS AND METHODS

Spinach leaves (*Spinacea oleracea*) were obtained from a local market. All biochemicals including Fru-2,6-P₂ and coupling assay enzymes were obtained from Sigma Chemical Co. (St Louis MO).

2.1. Fru-2,6-P2ase 'bioassay'

Fru-2,6-P₂ase was assayed at 20°C as described for Fru-6-P,2K except that the disappearance of Fru-2,6-P₂ was measured [1]. The reaction mixture contained: 0.1 M Tris-HCl (pH 7.4), and 0.1 μM Fru-2,6-P₂. The reaction was started by adding enzyme; final vol. 0.1 ml. At zero time, 2 min, and 4 min, an aliquot of the reaction mixture was analyzed for Fru-2,6-P₂ by the PFP method in which NADPH oxidation is followed spectrophotometrically at 340 nm [1,2]. The amount of Fru-2,6-P₂ hydrolyzed was evaluated by comparing the extent of PFP activation in this assay to that effected by known amounts of Fru-2,6-P₂.

2.2. Fru-2,6-P₂ase spectrophotometric assay

Fru-2,6-P₂ase could also be conveniently assayed (but with less sensitivity) by measuring the appearance of Fru-6-P in an Aminco DW-2 dual wavelength spectrophotometer. The spectrophotometric assay provided proof of the formation of Fru-6-P as a product of the Fru-2,6-P₂ase reaction. The reaction mixture contained enzyme as indicated, 0.1 M Tris-HCl (pH 7.4), 10 units glucose 6-phosphate dehydrogenase, 10 units phosphoglucose isomerase; 1 mM NADP; and 0.1 μ M (or the indicated amount) of Fru-2,6-P₂; final vol. 1.0 ml. The reaction was started by adding enzyme. The NADP reduced was measured at 340 nm. This assay was about 1/5th as sensitive as the bioassay described above.

2.3. Purification of Fru-2,6-P₂ase Fru-2,6-P₂ase was purified at 4°C from spinach

described for Fru-6-P,2K leaves. as [homogenization of leaves, polyethylene glycol DEAE (DE-52)-cellulose fractionation. hydroxyapatite chromatography] except that the polyethylene glycol fraction was 8-14% and the Tris-HCl buffer used after polyethylene glycol precipitation was pH 7.4. The enzyme, which was free of non-specific phosphatase activity, was concentrated by dialysis against 50 mM Tris-HCl buffer (pH 7.4), containing 50% glycerol and 0.1% 2-mercaptoethanol. The dialyzed Fru-2,6-P₂ase preparation could be stored at -20° C for several days without appreciable loss of activity.

Protein was determined by the method of Bradford [8].

3. RESULTS AND DISCUSSION

As found for Fru-2,6-P₂ [1] and Fru-6-P,2K [2], Fru-2,6-P₂ase was localized in the cytosolic fraction of leaf parenchyma cells. Partially purified preparations of Fru-2,6-P₂ase showed a broad optimum at pH 7.4 (fig.1) and were preferential for Fru-2,6-P₂ as substrate (fig.2). The substrate

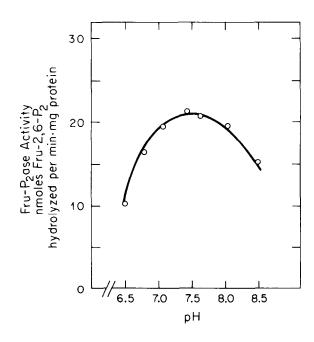


Fig. 1. Effect of pH on spinach leaf Fru-2,6- P_2 ase; Fru-2,6- P_2 ase (25 μ g) was assayed by following Fru-2,6- P_2 disappearance in the bioassay procedure.

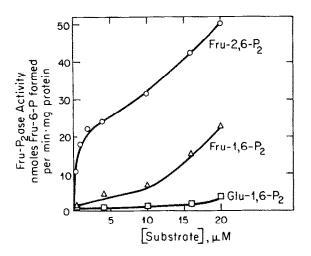


Fig. 2. Substrate specificity of spinach leaf Fru-2,6-P₂ase; Fru-2,6-P₂ase (45 μ g) was assayed by following Fru-6-P formation in the spectrophotometric assay.

specificity of the enzyme was also apparent from its great affinity for Fru-2,6-P₂ ($s_{0.5} = 0.6 \mu M$) and its relatively high turnover rate in the presence of this substrate ($V_{\text{max}} = 25.5 \text{ munits/mg}$) (table 1). Thus, like its counterpart from animal cells, leaf Fru-2,6-P₂ase seems to be an enzyme that functions mainly if not exclusively in the hydrolysis of Fru-2,6-P₂ [5-7]. However, unlike the mammalian enzyme, leaf Fru-2,6-P₂ase was not affected by a protein phosphorylation system (beef heart protein kinase catalytic subunit). Leaf Fru-2,6-P₂ase was also unaffected by reduced thioredoxins or

Table 1
Substrate affinity and maximal velocity of cytosolic Fru-2,6-P₂ase from spinach leaves

Substrate	Substrate required for half maximal velocity (s _{0.5} µM)	Maximal velocity $(V_{max}, munits/mg)^a$
Fru-2,6-P ₂	0.6	25.5
Fru-1,6-P ₂	15.0	6.7
Glu-2,6-P ₂	18.2	3.2

a One unit = The amount of enzyme which catalyzes 1 μmol Fru-6-P formation/min in the spectrophotometric assay

disulfide compounds such as oxidized glutathione, by divalent cations such as Mg^{2+} (5-30 mM), or EDTA (10 mM). MnCl₂ strongly inhibited the enzyme ($I_{0.5} = 1$ mM) (not shown).

Fru-6-P,2K from leaves was found [1] to respond strikingly to key metabolite effectors (P_i, an activator; and PGA, an inhibitor). With this perspective, we tested the effect of a variety of cytosolic metabolites on Fru-2,6-P₂ase and observed strong inhibition by the products of its reaction; i.e., P_i and Fru-6-P (fig.3). No effect was observed with the other metabolites tested (mM): PGA, 3; glucose 6-phosphate, 10; glucose 1-phosphate, 2; fructose 1,6-bisphosphate, 1; sucrose, 100; dihydroxyacetone phosphate, 3; UDP-glucose, 3; cAMP, 10; and AMP, 10. We found no evidence for an activation of Fru-2,6-P₂ase with any of the agents tested. Mammalian Fru-2,6-P₂ase is also strongly inhibited by Fru-6-P [5,6].

A final point worth noting concerns the relationship between Fru-2,6-P₂ase and Fru-6-P,2K. As is the case for mammalian cells [5,6], the activities responsible for the synthesis and hydrolysis of Fru-2,6-P₂ in leaves co-purified throughout the above procedure. In view of their similarities, it will therefore be of interest to determine whether the two activities also reside on a single protein in leaves.

The present results provide evidence for an enzyme that selectively degrades Fru-2,6-P₂ in the cytosolic fraction of leaf parenchyma cells. The enzyme, Fru-2,6-P₂ase is under regulation by Fru-6-P and P_i, two key leaf metabolites that also serve as

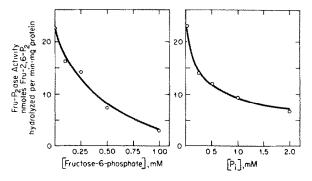


Fig. 3. Inhibition of spinach leaf Fru-2,6-P₂ase by its products. Fru-2,6-P₂ase (25 μg) was assayed by following Fru-2,6-P₂ disappearance in the bioassay procedure.

reaction products. It is significant to note that the concentration of both of these compounds in the cytosol changes in accordance with the metabolic state of chloroplasts [9]. The pattern of regulation of Fru-2,6-P₂ase by these metabolites thus supports the view [1] that Fru-2,6-P₂ represents a regulatory link between chloroplasts and the cytosol of photosynthetic leaf cells.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Science Foundation to B.B.B. M.S. gratefully acknowledges support from the Deutsche Forschungsgemeinschaft and the National Science Foundation.

REFERENCES

- [1] Cséke, C. and Buchanan, B.B. (1983) FEBS Lett. 155, 139-142.
- [2] Cséke, C., Weeden, N.F., Buchanan, B.B. and Uyeda, K. (1982) Proc. Natl. Acad. Sci. USA 79, 4322-4326.
- [3] Stitt, M., Mieskes, G., Söling, H.D. and Heldt, H.W. (1982) FEBS Lett. 145, 217-222.
- [4] Stitt, M., Gerhardt, R., Kürzel, B. and Heldt, H.W. (1983) Plant Physiol., in press.
- [5] Van Schaftingen, E., Davies, D.R. and Hers, H.-G. (1982) Eur. J. Biochem. 124, 143-149.
- [6] El-Maghrabi, M.R., Claus, T.H., Pilkis, J., Fox, E. and Pilkis, S.J. (1982) J. Biol. Chem. 257, 7603-7607.
- [7] Furuya, E., Yokoyama, M. and Uyeda, K. (1982) Biochem. Biophys. Res. Commun. 105, 264-270.
- [8] Bradford, M.M. (1976) Anal. Biochem. 72, 248-256.
- [9] Stitt, M., Wirtz, W. and Heldt, H.W. (1980) Biochim. Biophys. Acta 593, 85-102.